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In a paper on spectroscopic imaging published in this journal ~and the many references therein). However, as pointed out
Spielman et al. (J. Magn. Reson. 79, 66-77 (1988)) made the (1), in virtually all spectroscopic imaging applications the
important point that a priori information about the compounds  compounds being imaged and their MR spectroscopic structt
present can and should be incorporated into the estimation of are known. More exactly, with reference th,(the number of
spectroscopic signal parameters. They proposed using the maxi- components is known. Owing to the main field inhomoge-
mum likelihood (ML) approach for parameter estimation, but neity, the frequencies and initial phases of the spectral line
failed to incorporate properly the full a priori information that was '
assumed to be available. Consequently they ended up with a present 'are not exactly known; however, the ffeq“enc}’ ar
spectroscopic imaging method that is only a suboptimal approxi- phase differences are known. In other words we can write
mation of the ML method. In this paper we derive the exact ML
method, present a computationally efficient implementation of it o=0w—Aw, k=1,...,n 2]
(which is much faster than the direct implementation suggested by
Spielman et al. for their suboptimal method), and illustrate nu-
merically the performance gain that can be achieved over the and
method of Spielman et al.  © 2000 Academic Press

Key Words: magnetic resonance spectroscopy (MRS); magnetic o=0—Ag, k=1,...,n 3]
resonance spectroscopic imaging (MRSI); maximume-likelihood es- ’ T
timation; global optimization.
wherew ande are unknown butf w,} and {A¢,} are known.
Finally, the decaying coefficientsa{} are also usually known

1. INTRODUCTION AND PROBLEM STATEMENT with quite good accuracy. Inserting Eq. [2] and Eq. [3] into the
spectroscopic signal equation, Eq. [1], we obtain

The spectroscopic signal obtained by any of a number of
localization methods applied to each voxel of interest can be

reasonably well modeled as a sum of exponentially damped ! o
sinusoids in noise (see, e.gl)X X(1) = X Ppe ™ +e() t=1,... N, [4]
k=1
n
x(t) = E Bke—aktei(wkH(pk) +et) t=1,2,...,N, [1] where
k=1
(I)tk — e*(akJriAwk)I*iA‘pk [5]

where the sampling interval has been absorbeddig fand
{wd for notational convenience. In Eq. [1],of} are the . given fort = 1, ...,Nandk = 1, ...,n.

damping coefficients, 8.} are the amplitudes, ¢,} are the
frequencies, {,} are the initial phases, ande{t)} denotes a

noise sequence. Equation [1] constitutes a model commo (hce parameters) in Eq. [4] froM noisy observations

used in magnetic resonance (MR) spectroscopy, and the eﬂl(t)}{il. To review the parameter estimation method I (
mation of its unknown parameters is a well-studied problem f

which a large number of solutions have appeared in both the
MR literature and the signal processing literature (see, &g., (

The basic problem considered ih) (was the estimation of
{B\} (the parameters of major interest) and, (¢) (the nui-

a= [Blei(¢—A<p1) L Bneiw—&pn)]T [6]
! This work was partly supported by the Senior Individual Grant Program of
the Swedish Foundation for Strategic Research (SSF). x=[x(1)...x(N)]" [7]
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and letV be theN X n matrix with the ¢, k)-element given 2. EXACT MLE
by

Let ® be the N X n) matrix with the ¢, k)-element given
by ®,, in Eq. [5], and let

\Pt,k — e[*akJri(w*Awk)]t_ [8]
_ _ o _ =[B1.. . Bul" [13]
Under the assumption that the noiseg(f)} is white and cir- .
cularly Gaussian distributed, the maximum likelihood (ML) e . 0
estimation of the unknown parameters reduces to the minimi- D= RN [14]
zation with respect to (w.r.t.p, ¢, and {8,} of the function 0 er
(see, e.g., 4, J):

Using this notation we can rewrite the ML criterion in Eq. [9]

|x — wal?, o]

. . Ix = DPBe|? = [[D*x — e’ [15]
where| - || denotes the Euclidean vector nofgnoring the fact

that the phase differencdsA¢,} in Eq. [6] are known,(1)

. .
minimized Eq. [9] w.r.ta to obtain Hereafter, the symbol * denotes the conjugate transpose. V

remark on the fact that if the noise(t)} in Eq. [4] is not white
and circular Gaussian then the method based on the minin

a= (V*w) wrx. [10] zation of Eq. [15] is no longer MLE. However, even for
colored non-Gaussian noise the parameter estimates obtail
The corresponding minimum value of Eq. [9] is by minimizing Eq. [15] turn out to be quite accurate for a wide

range of scenarios (see, e.d®))( Whenever the noise in Eq.
[4] is either nonwhite or non-Gaussian the method that min

ICF = W (W) =) x| 2. [11]  mizes Eq. [15] to obtain parameter estimates is catledlin-
ear least squares.
Consequentlyw was estimated inl) by minimizing the func-  In the following we minimize the (negative) log-likelihood
tion above, function (LF) in Eq. [15] w.r.t.8, ¢, andw in a step-by-step
manner.
mwin||(l — W) A [12] Optimization of LF w.r.t3

Since is a real-valued vector, we have
The resulting parameter estimates are not Miéng to the ID*x — (Pe¥)B||2 = x*x + BTD* DB — BTe *d*D*x
failure to incorporate the information that\fp,} are known.

The largern the less parsimonious is the model ok(f)} — x*Dde'p

based ora andw, and hence the less accurate are the parameter = x*x + BRe(D* D) B

estimates derived from this model. For convenience’s sake in ; i

what follows we will refer to the spectroscopic parameter — 2B 'Re(e *®*D*x), [16]

estimator in Eq. [10] and Eq. [12] as the Spielman method.

The main goal of the present paper is to detive exact ML where Ré) stands for the real part of the quantity between th
estimates of B,}, w, and ¢. A second goal is to descritee parentheses. The minimization of Eq. [16] w.ptis straight-
computationally efficient algorithnfior computing the exact forward. For any fixedo and ¢, the minimizer is given by
MLE. In (1) the 1-D search problem in Eq. [12] was apparently
solved by computing the projection matnik(W*¥) W+ for B =T 'Reg®*D*xe %), [17]
each value ofv tested. However, this may be computationally
quite demanding (and is in fact unnecessary). Here we W|IIh ore
show that the main computational step of the exact MLE
consists also of a 1-D search problem, for the solution of which
we will develop a computationally efficient FFT-based algo- I' = Re(®* D). [18]
rithm. The exact MLE proposed in this paper will be shown to
be not only more accurate than the suboptimal method)in (t can be readily verified (using some simple property o
but also computationally faster (when implemented as d€andermonde matrices) that the inverse in Eq. [17] exists
scribed below). and only if



110 STOICA AND SUNDIN

o+ 1Awy # a, + iAw, for k # p, [19] efficient manner. Lejw (k) denote the p, k)-element of the
n X N matrix I'"*?®*, that is,

which is evidently a weak requirement.
Insertingf3 into Eq. [16] yields the following function thatis ~ w,(k) = [T "Y?®*],, p=1,...,n; k=1,...,N.
to be minimized w.r.ty and w:
(28]
B'TB — 2B"Re(®*D*xe %)

[Re(®*D 1T [Re(®*D )] [20] The pth element ofy(w) in Eqg. [21] can then be written as
= - *D*xe™ - *D*xe™'?)].

Let I'*? denote a square root of the positive definite maltix !

(i.e.,F — FUZFT/Z), and Iet ’yp((l)) = E /Jdp(k)X(k)e*i“’k p = 1, P ,n. [29]

k=1
— T 2p*p=*

v(w) = IerDrx. [21] Hence {y,(w)}, for o € (—m, 7], can be efficiently evaluated
by usingan FFT algorithm possibly with zero paddinghis
will lead to a fast method for picking the peak @fw) in Eq.
[26], which will be similar to the periodogram method in
. spectral analysis3]. We note that zero padding will be needec

f = IRey(w)e ]| [22] " \whenever 2N is deemed to be larger than (some fraction of
Optimization of LF w.r.te the expected estimation error @

With this notation the problem of determining the MLE of
and o reduces to thenaximizationof the function

Omitting the dependence af on w, for notational conve- | symmary

nience, we can rewritéin Eq. [22] as
1. We use an FFT-based method to obtain the estidate

4f = (yTe ¢ + y*ei¥)(ye ¢ + ye'¥) Eq. [27], assumi.ng that no_good ipitial estimatewois known;
e . - if a reliable estimate ofw is available then we replace the
=(yly)e ™+ y*ye'* + vy +v*v,  [23] global search for the maximizer in Eq. [27] by a computation

ally more efficient local search (see the following section)
where the overbar denotes the complex conjugate. It followsis is the main computational step of the exact MLE algo
that rithm.
2. Next we estimatepr as in Eq. [25]. The computational
2f = y*y + R (yTy)e %] burden of this step is negligible.
ok T T\ 3. Finally we obtain estimates of the parameters of majc
vy lyTyleodardyly) = 2¢l, [24] interest, {3}, using Eq. [17]. Note that in view of Eq. [21],

where, for any complex variablg we writev = |v|e' *. The R s o
maximization of Eq. [24] w.r.tg is immediate. The maximizer B=T""Rey(@)e ], (30]
is
where botH™ " and+y(®) are available from Step 1. Hence the
1 computational burden of Step 3 is also quite modest.

¢=5agy’y) [29] In the sequel we assume, as stated before, tha} fire
exactly known. What happens when this is not the case is
interesting question. More exactly, the question concerns tl
sensitivity of the ML estimates off§,} to errors in {«,} as
well as possible means of reducing this sensitivity (if signifi:
cant). While a study of these aspects is beyond the scope of 1
present paper (for clarity and conciseness reasons), we n
Optimization of LF w.r.tw briefly that relatively significant errors inof,} can be handled
in a multistep manner as follows.

and the function left for maximization w.r.t» is given by

9(0) = y*(0)y(0) + |y (w)y(w)|. (26]

Estimation ofw by

& = arg maxg(w) [27] 1. Using the latest available values o#{, obtain est
® mates of {, ¢, B} in Eq. [1] by means of the ML algorithm
described above.
is a 1-D search problem. In the rest of this section we presen®. Using the latest available estimates of,{p, 8.} in the
an FFT-based method for solving Eq. [27] in a computationalML criterion in Eq. [15] and viewing the so-obtained criterion
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FIG. 1. Magnitude spectra (FFT) of simulaté® data. The peaks correspond to external standard (ES), phosphomonoesters (PME), iorganic phQspha
phosphodiesters (PDE), and the «, and 8 phosphorus of adenosine triphosphate (ATP). Left: Magnitude spectrum of noise free data. Right: Magni
spectrum of noisy datd\ = 128 and SNR-12.5 dB for PME.

as a function of {,}, perform one-stepwith a Newton— nitude spectrum of a noisy realization is displayed (again fc
Raphson (or scoring) algorithm initialized in the most recett = 128). Theadded complex, white circular Gaussian noise
estimate of {,}. sequence has a variance chosen as to obtain a signal-to-n

ratio (SNR) of —12.5 dB for the smallest peak (PME). Note

By iterating the above two steps only a few times (such as onee e closely spaced peaks of thanda-ATP doublets and

or twice) we can mitigate the degradation of the ML estimat?ﬁe B-ATP triplet can not be resolved by the FET

of {o, @ [.g.k} owing to errors in fud, unless the I_atter '€ " The SNR is defined as the ratio of the power of the weake
rather significant (in which case a larger number of iterations of ; . . )
ponent in Eq. [1] (witlN < =) to the noise power:

steps 1 and 2 may be required). Since the computatior(fz(i)rn
complexity of step 2 is comparatively low, the computational
burden of the iterative algorithm outlined above is approxima- 1 N-!
tively equal to that of the MLE of &, ¢, B} times the number > Bie *o?
of iterations performed. t=0

Bil+e 24 ...+ g 2alN-D A

3. NUMERICAL EXAMPLE =— N = SNR [31]
(o

In this section a numerical example is used to compare the
two methods with respect to both their statistical accuracy andere o® denotes the noise variance, and we assume that t
their computational complexity. Experimental signals containeakest component in Eq. [1] correspondskte- 1 (for the
many different sources of error which makes it difficult tsake of discussion). Fat, = 0, Eq. [31] becomes the usual
distinguish between the actual estimation errors and the erraatio of powersB?/a”. Fora, > 0, Eq. [31] typically decreases
related to experimental imperfections. Therefore the followirgs N increases, as might be expected. Note tdamay be
evaluation is performed using simulated data. chosen to match the decaying time of the most slowly decayir

The signal considered consists of 11 peaks satisfying tbemponent in Eq. [1] and that this component may not be tt
model given in Eq. [1]. On the left-hand side of Fig. 1 theveakest. Hence the SNR definition in Eq. [31] may indicate
magnitude spectrum (obtained by the FFT) of the noise-fréass favorable scenario than what we really have at hand, a
data is displayed (foN = 128). Thedata approximately perhaps a more informative definition of the SNR would cor
correspond to &'P spectrum with the following metaboliterespond to summing Eqg. [31] over all components in Eq. [1
peaks: external standard (ES), phosphomonoesters (PME),(for k = 1, ..., n).
organic phosphate (R phosphodiesters (PDE), and the  The frequency estimat& is obtained by solving the 1-di-
(doublet),a (doublet), ang3 (triplet) phosphorus of adenosinemensional optimization problem in Eq. [12] or Eq. [27] for the
triphosphate (ATP). On the right-hand side of Fig. 1 the matwo methods, respectively. The optimization is performed wit
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FIG. 2. Left: Sum of the estimated amplitude RMSE for the Spielman method and MLE as a function of SNR. Results were obtained via a local sear
1000 simulation runs using 128 data points. Right: Number of floating point operations (flops) associated with a local search for the Spielmarl fktEod a
as a function of the number of data points. S8R—-12.5 dB for the smallest peak (PME).

either alocal optimization algorithm or alobal optimization each set is 128 and the number of simulation runs is 1000.
algorithm. The local optimization algorithms have the advaman be seen that the MLE is very close to the best possik
tage of fast convergence and small computational complexiperformance while the results for the Spielman method a
However, a drawback is that these local approaches are depgorse. On the right-hand side of Fig a comparison of the
dent on a good starting value to converge to the desired globamputational complexity as a function of the number of dat
optimum. In spectroscopic imaging applications such startipgints, N, is displayed. The figure shows that the local maxi
values are normally available from spectra in neighboringization of the criterion in our exact MLE method requires
voxels. Therefore, local optimization algorithms such as grapproximately 100 times less floating point operations (flop:
dient-based or simplex-based methods are the ones most ubkad that of the loss function in the Spielman method.
in practice. On the other hand global optimization algorithms In Fig. 3 experimental results for the individual peaks ob
are also of interest in those cases in which good initial estained from 1000 simulation runs are displayed. The number
mates are not available. Note that the optimization is only w.rdata points is 128 and the SNR-s12.5 dB for the smallest
one parameterp. This allows us to use a “brute force” gridpeak (PME). To the left the mean Spielman estimatesne
search over the possible frequency interval to find the gloksthndard deviation are shown along with the true amplitude
optimum. Assuming that the grid is chosen fine enough, thi® the right the corresponding results for the MLE are showr
ensures convergence to the global optimum without requirifidne Spielman method leads to a visibly larger variance of tf
any starting value. The applicability of this approach is depeastimates in particular for the closely spacgdand o-ATP
dent on the amount of computations required to evaluate the d6ublets and thg3-ATP triplet (the estimated amplitudes of
for each frequency. The desirable properties of the gloklese components are also somewhat biased; see the figu
approach can motivate its use even if the computational loadTise reason is that for these difficult cases the correct incorp
(slightly) higher than that of the local optimization algorithmstation of the assumption of known initial phase differences i
First the accuracy of the estimates is evaluated using a localicial.
optimization algorithm. The optimization is performed using a Next we turn our attention to evaluating the methods i
Nelder—Mead simplex algorithm. To obtain a fair comparisocombination with a global optimization algorithm. On the
between the methods the exact frequency is provided asefi-hand side of Fig. 4 the numbers of flops associated with
starting value. The empirical accuracy of the estimators ggid search are displayed for the two methods, respectively.
compared to the CrameRao lower bound (CRB) which sets ais evident that the number of flops for the Spielman method
lower bound on the accuracy of any (asymptotically) unbiaseduch larger than for the MLE method. Note that the efficien
estimator (see, e.9.2(3). On the left-hand side of Fig. 2 themanner in which the evaluation can be performed for the MLI
sums of the experimental root mean square errors (RMSE)mékes the difference in computations between using the loc
the 11 amplitude estimates are compared to the correspondingl global optimization algorithms quite small. For the MLE it
CRB for different noise levels. The number of data points iis therefore realistic to use the global grid search in practic



EXACT ML ESTIMATION OF SPECTROSCOPIC PARAMETERS 113

110 T T T T T T T T T 110 T T T T T T T T T
ES PDE ES PDE
100

1

%0l % % ¥-ATP  a-ATP B-ATP 9o % % -ATP  a-ATP B-ATP g

i i

: [ % i

701

80| 6ol

i

50 50 -

a0t B 40
30| g 30+ E
PME PME

X True 8, x True 8,

Amplitude (arbitrary units)
Amplitude (arbitrary units)

20 - B 201 = B
© Mean fy, % ©  Mean fy, %
10 ¥—* £ 1 st. dev. B 10 %#—* £ 1 st. dev. B
o I 1 L L L L L L i 0 i L ' I s L L L L
500 400 300 200 100 0 ~100 ~200 -300 ~400 ~500 500 400 300 200 100 0 -100 -200 -300 ~400 ~500
Frequency (Hz) Fregquency (Hz)

FIG. 3. Individual amplitude estimates. Means and standard deviations were obtained from 1000 simulation runs using 128 data pointssand SBIR
dB for the smallest peak (PME). Left: Spielman method. Right: MLE.

whereas this is not the case for the Spielman method. On thethat region using a chirp or a zoom FFT (see, e4)) {0
right-hand side of Fig. 4 simulation results showing the accaecurately locate the optimum. Such an implementation wou
racy of the MLE using the global grid search are displayele computationally more efficient than the global fine-gric
The experimental data are gathered from 1000 simulation ruisesarch based on an FFT with a lot of zero padding, but it me
and the number of data points is 128. It can be seen that theminate in a local optimum owing to the fact that the initia
estimates are very good as long as the grid is chosen fioeigh global search may miss the global optimum.
enough. For high SNR the finest grid of those considered is
necessary to achieve results that are close to the CRB. 4. CONCLUDING REMARKS

Finally, we note that the global search algorithm could also
be implemented as follows: first perform a rough grid search byln summary the proposed MLE was seen to have signi
using an FFT with little or no zero padding to find the regioicantly better accuracy than the Spielman suboptime
where the optimum point lies; then perform a fine grid searchethod. The numerical results supported the theoretic
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FIG. 4. Left: Number of floating point operations (flops) corresponding to using a grid search for the Spielman method and MLE as a function of the r
of data points. Right: Sum of estimated amplitude RMSE for MLE as a function of SNR. Results were obtained from 1000 simulation runs using 128.date
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