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In a paper on spectroscopic imaging published in this journal
Spielman et al. (J. Magn. Reson. 79, 66–77 (1988)) made the
important point that a priori information about the compounds
present can and should be incorporated into the estimation of
spectroscopic signal parameters. They proposed using the maxi-
mum likelihood (ML) approach for parameter estimation, but
failed to incorporate properly the full a priori information that was
assumed to be available. Consequently they ended up with a
spectroscopic imaging method that is only a suboptimal approxi-
mation of the ML method. In this paper we derive the exact ML
method, present a computationally efficient implementation of it
(which is much faster than the direct implementation suggested by
Spielman et al. for their suboptimal method), and illustrate nu-
merically the performance gain that can be achieved over the
method of Spielman et al. © 2000 Academic Press

Key Words: magnetic resonance spectroscopy (MRS); magnetic
esonance spectroscopic imaging (MRSI); maximum-likelihood es-
imation; global optimization.

1. INTRODUCTION AND PROBLEM STATEMENT

The spectroscopic signal obtained by any of a numbe
localization methods applied to each voxel of interest ca
reasonably well modeled as a sum of exponentially dam
sinusoids in noise (see, e.g., (1)):

x~t! 5 O
k51

n

bke
2aktei ~vkt1wk! 1 e~t! t 5 1, 2, . . . ,N, [1]

here the sampling interval has been absorbed in {a k} and
{ v k} for notational convenience. In Eq. [1], {a k} are the
damping coefficients, {b k} are the amplitudes, {v k} are the
requencies, {w k} are the initial phases, and {e(t)} denotes a
noise sequence. Equation [1] constitutes a model comm
used in magnetic resonance (MR) spectroscopy, and the
mation of its unknown parameters is a well-studied problem
which a large number of solutions have appeared in bot
MR literature and the signal processing literature (see, e.g3)
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and the many references therein). However, as pointed o
(1), in virtually all spectroscopic imaging applications
compounds being imaged and their MR spectroscopic stru
are known. More exactly, with reference to (1), the number o
componentsn is known. Owing to the main field inhomog
neity, the frequencies and initial phases of the spectral
present are not exactly known; however, the frequency
phase differences are known. In other words we can writ

vk 5 v 2 Dvk k 5 1, . . . , n [2]

and

wk 5 w 2 Dwk k 5 1, . . . , n, [3]

wherev andw are unknown but {Dv k} and {Dw k} are known.
Finally, the decaying coefficients {a k} are also usually know
with quite good accuracy. Inserting Eq. [2] and Eq. [3] into
spectroscopic signal equation, Eq. [1], we obtain

x~t! 5 O
k51

n

F t,kbke
i ~vt1w! 1 e~t! t 5 1, . . . , N, [4]

here

F t,k 5 e2~ak1iDvk!t2iDwk [5]

are given fort 5 1, . . . , N andk 5 1, . . . , n.
The basic problem considered in (1) was the estimation o

{ b k} (the parameters of major interest) and (v, w) (the nui-
sance parameters) in Eq. [4] fromN noisy observation

x(t)} t51
N . To review the parameter estimation method in1),

et

a 5 @b1e
i ~w2Dw1! . . . bne

i ~w2Dwn!# T [6]

x 5 @ x~1! . . . x~N!# T [7]
f
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109EXACT ML ESTIMATION OF SPECTROSCOPIC PARAMETERS
and letC be theN 3 n matrix with the (t, k)-element give
by

C t,k 5 e@2ak1i ~v2Dvk!#t. [8]

Under the assumption that the noise {e(t)} is white and cir-
cularly Gaussian distributed, the maximum likelihood (M
estimation of the unknown parameters reduces to the mi
zation with respect to (w.r.t.)v, w, and {b k} of the function
(see, e.g., (1, 3)):

i x 2 Cai 2, [9]

wherei z i denotes the Euclidean vector norm.Ignoring the fac
that the phase differences{ Dw k} in Eq. [6] are known,(1)
minimized Eq. [9] w.r.t.a to obtain

â 5 ~C* C! 21C* x. [10]

he corresponding minimum value of Eq. [9] is

i~I 2 C~C* C! 21C* ! xi 2. [11]

Consequently,v was estimated in (1) by minimizing the func
tion above,

min
v

i~I 2 C~C* C! 21C* ! xi 2. [12]

The resulting parameter estimates are not MLEowing to the
failure to incorporate the information that {Dw k} are known.
The largern the less parsimonious is the model of {x(t)}

ased ona andv, and hence the less accurate are the param
estimates derived from this model. For convenience’s sa
what follows we will refer to the spectroscopic param
estimator in Eq. [10] and Eq. [12] as the Spielman metho

The main goal of the present paper is to derivethe exact ML
estimates of{ b k}, v, and w. A second goal is to describea
computationally efficient algorithmfor computing the exa
MLE. In (1) the 1-D search problem in Eq. [12] was appare
solved by computing the projection matrixC(C*C)21C* for

ach value ofv tested. However, this may be computation
quite demanding (and is in fact unnecessary). Here we
show that the main computational step of the exact M
consists also of a 1-D search problem, for the solution of w
we will develop a computationally efficient FFT-based a
rithm. The exact MLE proposed in this paper will be show
be not only more accurate than the suboptimal method i1)
but also computationally faster (when implemented as
scribed below).
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2. EXACT MLE

Let F be the (N 3 n) matrix with the (t, k)-element give
by F t,k in Eq. [5], and let

b 5 @b1 . . . bn#
T [13]

D 5 Seiv 0
···

0 eiNv
D . [14]

Using this notation we can rewrite the ML criterion in Eq.
as

i x 2 DFbeiwi 2 5 iD* x 2 Fbeiwi 2. [15]

Hereafter, the symbol * denotes the conjugate transpose
remark on the fact that if the noise {e(t)} in Eq. [4] is not white
and circular Gaussian then the method based on the m
zation of Eq. [15] is no longer MLE. However, even
colored non-Gaussian noise the parameter estimates ob
by minimizing Eq. [15] turn out to be quite accurate for a w
range of scenarios (see, e.g., (2)). Whenever the noise in E
[4] is either nonwhite or non-Gaussian the method that m
mizes Eq. [15] to obtain parameter estimates is callednonlin-
ear least squares.

In the following we minimize the (negative) log-likeliho
function (LF) in Eq. [15] w.r.t.b, w, andv in a step-by-ste
manner.

Optimization of LF w.r.t.b

Sinceb is a real-valued vector, we have

iD* x 2 ~Feiw!bi 2 5 x* x 1 b TF* Fb 2 b Te2iwF* D* x

2 x* DFeiwb

5 x* x 1 b TRe~F* F!b

2 2b TRe~e2iwF* D* x!, [16]

here Re[ stands for the real part of the quantity between
arentheses. The minimization of Eq. [16] w.r.t.b is straight

forward. For any fixedv andw, the minimizer is given by

b̂ 5 G 21Re~F* D* xe2iw!, [17]

where

G 5 Re~F* F!. [18]

t can be readily verified (using some simple property
andermonde matrices) that the inverse in Eq. [17] exis
nd only if



is

ix

W f

-

w low
t

w
er

i

O

i se
a al

e e

T

d

in
ed
of)

i he
ion-
on).
lgo-

al

ajor
],

the

is an
s the

nifi-
of the

note
d

ion

110 STOICA AND SUNDIN
ak 1 iDvk Þ ap 1 iDvp for k Þ p, [19]

which is evidently a weak requirement.
Insertingb̂ into Eq. [16] yields the following function that

to be minimized w.r.t.w andv:

b̂ TGb̂ 2 2b̂ TRe~F* D* xe2iw!

5 2@Re~F* D* xe2iw!# TG 21@Re~F* D* xe2iw!#. [20]

Let G1/2 denote a square root of the positive definite matrG
(i.e., G 5 G 1/ 2GT/ 2), and let

g~v! 5 G 21/ 2F* D* x. [21]

ith this notation the problem of determining the MLE ow
andv reduces to themaximizationof the function

f 5 iRe@g~v!e2iw#i 2. [22]

Optimization of LF w.r.t.w

Omitting the dependence ofg on v, for notational conve
nience, we can rewritef in Eq. [22] as

4f 5 ~g Te2iw 1 g* eiw!~ge2iw 1 g# eiw!

5 ~g Tg!e2i2w 1 g* g# ei2w 1 g Tg# 1 g* g, [23]

here the overbar denotes the complex conjugate. It fol
hat

2f 5 g* g 1 Re@~g Tg!e2i2w#

5 g* g 1 ug Tgucos@arg~g Tg! 2 2w#, [24]

here, for any complex variablen, we writen 5 unuei arg(n). The
maximization of Eq. [24] w.r.t.w is immediate. The maximiz
s

ŵ 5
1

2
arg~g Tg! [25]

and the function left for maximization w.r.t.v is given by

g~v! 5 g* ~v!g~v! 1 ug T~v!g~v!u. [26]

ptimization of LF w.r.t.v

Estimation ofv by

v̂ 5 arg max
v

g~v! [27]

s a 1-D search problem. In the rest of this section we pre
n FFT-based method for solving Eq. [27] in a computation
s

nt
ly

fficient manner. Letm p(k) denote the (p, k)-element of th
n 3 N matrix G21/2F*, that is,

mp~k! 5 @G 21/ 2F* #p,k p 5 1, . . . , n; k 5 1, . . . , N.

[28]

he pth element ofg(v) in Eq. [21] can then be written as

gp~v! 5 O
k51

N

mp~k! x~k!e2ivk p 5 1, . . . , n. [29]

Hence {g p(v)}, for v [ (2p, p], can be efficiently evaluate
by usingan FFT algorithm possibly with zero padding.This
will lead to a fast method for picking the peak ofg(v) in Eq.
[26], which will be similar to the periodogram method
spectral analysis (3). We note that zero padding will be need
whenever 2p/N is deemed to be larger than (some fraction
the expected estimation error inv̂.

In Summary

1. We use an FFT-based method to obtain the estimatev̂ in
Eq. [27], assuming that no good initial estimate ofv is known;
f a reliable estimate ofv is available then we replace t
global search for the maximizer in Eq. [27] by a computat
ally more efficient local search (see the following secti
This is the main computational step of the exact MLE a
rithm.

2. Next we estimatew as in Eq. [25]. The computation
burden of this step is negligible.

3. Finally we obtain estimates of the parameters of m
interest, {b k}, using Eq. [17]. Note that in view of Eq. [21

b̂ 5 G 2T/ 2Re@g~v̂!e2i ŵ#, [30]

where bothG2T/ 2 andg(v̂) are available from Step 1. Hence
computational burden of Step 3 is also quite modest.

In the sequel we assume, as stated before, that {a k} are
exactly known. What happens when this is not the case
interesting question. More exactly, the question concern
sensitivity of the ML estimates of {b k} to errors in {a k} as
well as possible means of reducing this sensitivity (if sig
cant). While a study of these aspects is beyond the scope
present paper (for clarity and conciseness reasons), we
briefly that relatively significant errors in {a k} can be handle
in a multistep manner as follows.

1. Using the latest available values of {a k}, obtain esti-
mates of {v, w, b k} in Eq. [1] by means of the ML algorithm
described above.

2. Using the latest available estimates of {v, w, b k} in the
ML criterion in Eq. [15] and viewing the so-obtained criter
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111EXACT ML ESTIMATION OF SPECTROSCOPIC PARAMETERS
as a function of {a k}, perform one-stepwith a Newton–
Raphson (or scoring) algorithm initialized in the most re
estimate of {a k}.

By iterating the above two steps only a few times (such as
or twice) we can mitigate the degradation of the ML estim
of { v, w, b k} owing to errors in {a k}, unless the latter ar
ather significant (in which case a larger number of iteration
teps 1 and 2 may be required). Since the computat
omplexity of step 2 is comparatively low, the computatio
urden of the iterative algorithm outlined above is approx

ively equal to that of the MLE of {v, w, b k} times the numbe
of iterations performed.

3. NUMERICAL EXAMPLE

In this section a numerical example is used to compar
two methods with respect to both their statistical accuracy
their computational complexity. Experimental signals con
many different sources of error which makes it difficult
distinguish between the actual estimation errors and the e
related to experimental imperfections. Therefore the follow
evaluation is performed using simulated data.

The signal considered consists of 11 peaks satisfying
model given in Eq. [1]. On the left-hand side of Fig. 1
magnitude spectrum (obtained by the FFT) of the noise
data is displayed (forN 5 128). The data approximate
orrespond to a31P spectrum with the following metabol

peaks: external standard (ES), phosphomonoesters (PME
organic phosphate (Pi), phosphodiesters (PDE), and theg
(doublet),a (doublet), andb (triplet) phosphorus of adenosi
triphosphate (ATP). On the right-hand side of Fig. 1 the m

FIG. 1. Magnitude spectra (FFT) of simulated31P data. The peaks corre
phosphodiesters (PDE), and theg, a, and b phosphorus of adenosine tri
spectrum of noisy data.N 5 128 and SNR212.5 dB for PME.
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nitude spectrum of a noisy realization is displayed (again
N 5 128). Theadded complex, white circular Gaussian no
sequence has a variance chosen as to obtain a signal-to
ratio (SNR) of212.5 dB for the smallest peak (PME). N
that the closely spaced peaks of theg anda-ATP doublets an
the b-ATP triplet can not be resolved by the FFT.

The SNR is defined as the ratio of the power of the wea
component in Eq. [1] (withN , `) to the noise power:

1

N O
t50

N21

b 1
2e22a1t/s 2

5
b 1

2

s 2

1 1 e22a1 1 · · ·1 e22a1~N21!

N
5
‚

SNR, [31]

heres2 denotes the noise variance, and we assume th
weakest component in Eq. [1] corresponds tok 5 1 (for the
ake of discussion). Fora1 5 0, Eq. [31] becomes the usu

ratio of powers,b2/s2. Fora1 . 0, Eq. [31] typically decreas
s N increases, as might be expected. Note thatN may be
hosen to match the decaying time of the most slowly deca
omponent in Eq. [1] and that this component may not be
eakest. Hence the SNR definition in Eq. [31] may indica

ess favorable scenario than what we really have at hand
erhaps a more informative definition of the SNR would
espond to summing Eq. [31] over all components in Eq
for k 5 1, . . . , n).

The frequency estimatev̂ is obtained by solving the 1-d
mensional optimization problem in Eq. [12] or Eq. [27] for
two methods, respectively. The optimization is performed

nd to external standard (ES), phosphomonoesters (PME), iorganic phosi),
sphate (ATP). Left: Magnitude spectrum of noise free data. Right: M
spo
pho
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112 STOICA AND SUNDIN
either alocal optimization algorithm or aglobal optimization
lgorithm. The local optimization algorithms have the adv

age of fast convergence and small computational comple
owever, a drawback is that these local approaches are d
ent on a good starting value to converge to the desired g
ptimum. In spectroscopic imaging applications such sta
alues are normally available from spectra in neighbo
oxels. Therefore, local optimization algorithms such as
ient-based or simplex-based methods are the ones mos

n practice. On the other hand global optimization algorit
re also of interest in those cases in which good initial
ates are not available. Note that the optimization is only w
ne parameter,v. This allows us to use a “brute force” g

search over the possible frequency interval to find the g
optimum. Assuming that the grid is chosen fine enough,
ensures convergence to the global optimum without requ
any starting value. The applicability of this approach is de
dent on the amount of computations required to evaluate th
for each frequency. The desirable properties of the g
approach can motivate its use even if the computational lo
(slightly) higher than that of the local optimization algorithm

First the accuracy of the estimates is evaluated using a
optimization algorithm. The optimization is performed usin
Nelder–Mead simplex algorithm. To obtain a fair compar
between the methods the exact frequency is provided
starting value. The empirical accuracy of the estimato
compared to the Crame´r–Rao lower bound (CRB) which set
lower bound on the accuracy of any (asymptotically) unbi
estimator (see, e.g., (2, 3)). On the left-hand side of Fig. 2 t
ums of the experimental root mean square errors (RMS
he 11 amplitude estimates are compared to the correspo
RB for different noise levels. The number of data point

FIG. 2. Left: Sum of the estimated amplitude RMSE for the Spielman
1000 simulation runs using 128 data points. Right: Number of floating po
as a function of the number of data points. SNR5 212.5 dB for the small
-
ty.
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ach set is 128 and the number of simulation runs is 100
an be seen that the MLE is very close to the best pos
erformance while the results for the Spielman method
orse. On the right-hand side of Fig. 2 a comparison of th
omputational complexity as a function of the number of
oints,N, is displayed. The figure shows that the local m
ization of the criterion in our exact MLE method requ
pproximately 100 times less floating point operations (fl

han that of the loss function in the Spielman method.
In Fig. 3 experimental results for the individual peaks

ained from 1000 simulation runs are displayed. The numb
ata points is 128 and the SNR is212.5 dB for the smalle
eak (PME). To the left the mean Spielman estimates6 one
tandard deviation are shown along with the true amplitu
o the right the corresponding results for the MLE are sho
he Spielman method leads to a visibly larger variance o
stimates in particular for the closely spacedg- and a-ATP

doublets and theb-ATP triplet (the estimated amplitudes
these components are also somewhat biased; see the fi
The reason is that for these difficult cases the correct inc
ration of the assumption of known initial phase difference
crucial.

Next we turn our attention to evaluating the method
combination with a global optimization algorithm. On
left-hand side of Fig. 4 the numbers of flops associated w
grid search are displayed for the two methods, respective
is evident that the number of flops for the Spielman meth
much larger than for the MLE method. Note that the effic
manner in which the evaluation can be performed for the M
makes the difference in computations between using the
and global optimization algorithms quite small. For the ML
is therefore realistic to use the global grid search in prac

thod and MLE as a function of SNR. Results were obtained via a local s
operations (flops) associated with a local search for the Spielman methd MLE
peak (PME).
me
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est
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113EXACT ML ESTIMATION OF SPECTROSCOPIC PARAMETERS
whereas this is not the case for the Spielman method. O
right-hand side of Fig. 4 simulation results showing the a
racy of the MLE using the global grid search are displa
The experimental data are gathered from 1000 simulation
and the number of data points is 128. It can be seen tha
estimates are very good as long as the grid is chosen
enough. For high SNR the finest grid of those considere
necessary to achieve results that are close to the CRB.

Finally, we note that the global search algorithm could
be implemented as follows: first perform a rough grid searc
using an FFT with little or no zero padding to find the reg
where the optimum point lies; then perform a fine grid se

FIG. 3. Individual amplitude estimates. Means and standard deviatio
dB for the smallest peak (PME). Left: Spielman method. Right: MLE.

FIG. 4. Left: Number of floating point operations (flops) correspondin
of data points. Right: Sum of estimated amplitude RMSE for MLE as a fu
he
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in that region using a chirp or a zoom FFT (see, e.g., (4)) to
accurately locate the optimum. Such an implementation w
be computationally more efficient than the global fine-
search based on an FFT with a lot of zero padding, but it
terminate in a local optimum owing to the fact that the in
rough global search may miss the global optimum.

4. CONCLUDING REMARKS

In summary the proposed MLE was seen to have sig
icantly better accuracy than the Spielman subopt
method. The numerical results supported the theore

were obtained from 1000 simulation runs using 128 data points and SN5 212.5

using a grid search for the Spielman method and MLE as a function of t
ion of SNR. Results were obtained from 1000 simulation runs using 128s.
ns
g to
nct
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114 STOICA AND SUNDIN
prediction that our MLE has an accuracy close to the C
Furthermore, the efficient implementation of the MLE m
its computational complexity several orders of magnit
less than that corresponding to the Spielman method.
choice of a local or global optimization algorithm is dep
dent on the availability of good starting values. Howe
the highly efficient evaluation of the LF for the ML
method using the FFT makes it possible to benefit from
desirable properties of the global search with little or
increase in the computational load.
.
e
e
he
-
,

e
o

REFERENCES

1. D. Spielman, P. Webb, and A. Macovski, A statistical framework for
in vivo spectroscopic imaging. J. Magn. Reson. 79, 66–77 (1988).

. P. Stoica, A. Jakobsson, and J. Li, Cisoid parameter estimation in
the colored noise case: Asymptotic Cramér–Rao bound, maximum
likelihood and nonlinear least-squares. IEEE Trans. Signal Process-
ing 45, 2048–2059 (1997).

. P. Stoica and R. Moses, “Introduction to Spectral Analysis,” Prentice
Hall, Upper Saddle River, NJ (1997).

. B. Porat, “A Course in Digital Signal Processing,” Wiley, New York
(1997).


	1. INTRODUCTION AND PROBLEM STATEMENT
	2. EXACT MLE
	FIG. 1

	3. NUMERICAL EXAMPLE
	FIG. 2
	FIG. 3
	FIG. 4

	4. CONCLUDING REMARKS
	REFERENCES

